“十四五”国家重点研发计划揭榜挂帅项目“高端生鲜肉智能化加工工艺创新及产业化示范”

  • 解决的主要问题和主要研究内容:
  • 针对我国生鲜肉加工效率低、保质期短、产品同质化严重等问题,研究胴体及分割肉的食用品质特性和加工特性,基于畜禽品质大数据,研发智能分级分割技术;研究生鲜肉加工过程中微生物组的时空变化,研发冰温保鲜、真空包装、活性包装等生鲜肉品质智能保持新技术;研发低温高湿以及物理场辅助的原料肉解冻技术,开发智能化的预处理、腌制、保鲜等生鲜肉调理加工新技术;研究活性物质分离提取、调制加工等鲜肉加工副产物的高值化利用技术;集成智能化的分级分割、保鲜、包装、副产品高值化利用、调理加工等新技术,开发高品质生鲜肉产品和调理肉制品,并进行产业化应用。 要达到的成效和主要考核指标:研发生鲜肉加工新技术15-20 项,开发新产品 25-30 种,生产工艺智能化率提升到15%,生产效率提高 40%,形成示范生产线5 条以上;气调包装生鲜肉货架期延长至 10 天以上,真空包装生鲜肉延长至30天以上;副产物综合利用率提高至 65%,调理肉腌制时间缩短至6小时以内。
前一页 后一页
论文
Chen J, Chai J, Chen X, et al. Development of edible films by incorporating nanocrystalline cellulose and anthocyanins into modified myofibrillar proteins[J]. Food Chemistry, 2023, 417: 135820.
Chen J, Gao Q, Zhang X, et al. A structural explanation for protein digestibility changes in different food matrices[J]. Food Hydrocolloids, 2023, 136: 108281.
Chen J, Zeng X, Chai J, et al. Improvement of the emulsifying properties of mixed emulsifiers by optimizing ultrasonic-assisted processing[J]. Ultrasonics Sonochemistry, 2023, 95: 106397.
Chen J, Zeng X, Sun X, et al. A comparison of the impacts of different polysaccharides on the sono-physico-chemical consequences of ultrasonic-assisted modifications[J]. Ultrasonics Sonochemistry, 2023, 96: 106427.
Chen J, Zhang X, Bassey A P, et al. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(11): 3583-3603.
Chen X, Liu H, Li C, et al. Revealing the characteristic aroma and boundary compositions of five pig breeds based on HS-SPME/GC-O-MS, aroma recombination and omission experiments[J]. Food Research International, 2024, 178: 113954.
Cheng H, Li J, Yang Y, et al. Identifying freshness of various chilled pork cuts using rapid imaging analysis[J]. Journal of the Science of Food and Agriculture, 2025, 105(2): 747-759.
Cui W, Xie Y, Zhang Y, et al. Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations[J]. Food Research International, 2025: 115953.
Duan L, Bao J, Yang H, et al. Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks[J]. Foods, 2024, 13(23): 3745.
Fan S, Wang D, Wen X, et al. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films[J]. Food Hydrocolloids, 2023, 138: 108438.
Gan J, Mukaddas M, Tao Y, et al. High-voltage electrostatic field with 35 kV-15 min could reduce Pseudomonas spp. to maintain the quality of pork during− 1° C storage[J]. Innovative Food Science & Emerging Technologies, 2024, 94: 103700.
Gao Q, Chen J, Zhou G, et al. Different protein-anthocyanin complexes engineered by ultrasound and alkali treatment: Structural characterization and color stability[J]. Food chemistry, 2023, 427: 136693.
Geng Z, Ge J, Cui W, et al. Efficient de novo biosynthesis of heme by membrane engineering in Escherichia coli[J]. International Journal of Molecular Sciences, 2022, 23(24): 15524.
Huang Q, Zhang H, Zhang L, et al. Bacterial microbiota in different types of processed meat products: diversity, adaptation, and co-occurrence[J]. Critical Reviews in Food Science and Nutrition, 2025, 65(2): 287-302.
Li D, Zhang Z, Zhang K, et al. Comparative characterization of fatty acids and volatile substances in Chinese indigenous and hybrid pork in raw, cooked, and reheated states[J]. Food Bioscience, 2024, 61: 104865.
Li P, Xu F, Zhou H, et al. Evolution of antioxidant peptides and their proteomic homology during processing of Jinhua ham[J]. LWT, 2022, 166: 113771.
Li W, Yang X, Wang J, et al. Water holding-capacity and flavor improvement of prepared meat patties induced by magnetic field-assisted marinating and preheating[J]. Journal of Food Engineering, 2024: 112194.
Li X, Che L, Huang Q, et al. Insight into the autochthonous bacterial strains as starter cultures for improving the flavor profiles of dry-cured duck: Changes in microbial diversity and metabolic profiles[J]. Food Chemistry, 2024, 443: 138446.
Li X, Nie W, Wu Y, et al. Insight into the dynamic change of flavor profiles and their correlation with microbial community succession and lipid oxidation during the processing of dry-cured duck[J]. LWT, 2024, 198: 115966.
Li X, Zang M, Li D, et al. Effect of boiled-water-cooking time on quality and characteristic of flavor components in pig large intestines[J]. International Journal of Gastronomy and Food Science, 2024, 35: 100899.
Li Y, Liu X, Zhang J, et al. Textured vegetable protein as a partial replacement for lean meat in salami analogues: Perspectives on physicochemical properties, flavour and proteome changes[J]. Food Chemistry, 2025, 463: 140844.
Tao Y, Cai J, Wang P, et al. Application of rheology and interfacial rheology to investigate the emulsion stability of ultrasound-assisted cross-linked myofibrillar protein: Effects of oil phase types[J]. Food Hydrocolloids, 2024, 154: 110086.
Tao Y, Cai J, Wang P, et al. Effect of heat treatment on the stability of ultrasound-assisted cross-linked myofibrillar protein-stabilized emulsion filler phases via rheology and tribology[J]. Food Hydrocolloids, 2025, 158: 110570.
Tao Y, Cai J, Wang P, et al. Exploring the relationship between the interfacial properties and emulsion properties of ultrasound-assisted cross-linked myofibrillar protein[J]. Food Hydrocolloids, 2024, 146: 109287.
Tao Y, Guo Y, Li J, et al. Effect of temperature fluctuation during superchilling storage on the microstructure and quality of raw pork[J]. Meat Science, 2023, 198: 109096.
Teng S, Gan J, Chen Y, et al. The Application of Ultraviolet Treatment to Prolong the Shelf Life of Chilled Beef[J]. Foods, 2023, 12(12): 2410.
Wang H, Du Z, Li Y, et al. Non‐destructive prediction of TVB‐N using color‐texture features of UV‐induced fluorescence image for freeze–thaw treated frozen‐whole‐round tilapia[J]. Journal of the Science of Food and Agriculture, 2024, 104(5): 2574-2586.
Wang J, Lu Q, Gong J, et al. Magnetic field-assisted cascade effects of improving the quality of gels-based meat products: A mechanism from myofibrillar protein gelation[J]. Food Research International, 2023, 169: 112907.
Wang K, Qi L, Zhao L, et al. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application[J]. Carbohydrate Polymers, 2023, 301: 120361.
Wang K, Wang W, Zhang R, et al. Preparation of low molecular weight chondroitin sulfate from different sources by H2O2/ascorbic acid degradation and its degradation mechanism[J]. Food Chemistry, 2024, 434: 137392.
Wu Y, Deng J, Xu F, et al. The mechanism of Leuconostoc mesenteroides subsp. IMAU: 80679 in improving meat color: Myoglobin oxidation inhibition and myoglobin derivatives formation based on multi enzyme-like activities[J]. Food Chemistry, 2023, 428: 136751.
Wu Y, Deng J, Xu F, et al. Zinc protoporphyrin IX generation by Leuconostoc strains isolated from bulged pasteurized vacuum sliced hams[J]. Food Research International, 2023, 174: 113500.
Xie Y, Zhou K, Chen B, et al. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays[J]. Food Chemistry, 2023, 428: 136786.
Zeng X, Lv B, Zhang K, et al. Digestion Profiles of Protein in Edible Pork By-Products[J]. Foods, 2022, 11(20): 3191.
Zhang B, Dou H, Teng S, et al. Pseudomonas fragi and Pseudomonas lundensis drove the co-spoilage in chilled pork: Insights from the metabolome[J]. Food Chemistry, 2025, 464: 141717.
Zhang K, Li D, Zang M, et al. Comparative characterization of fatty acids, reheating volatile compounds, and warmed-over flavor (WOF) of Chinese indigenous pork and hybrid pork[J]. LWT, 2022, 155: 112981.
Zhang K, Zang M, Wang S, et al. Effects of defatting and cooking methods on pig large intestines volatile compounds by flavor omics and fatty acids[J]. LWT, 2023, 189: 115500.
Zhang W, Ni Y, Ma Y, et al. Pseudomonas weihenstephanensis through the iron metabolism pathway promotes in situ spoilage capacity of prepared beef steaks during cold storage[J]. Food Microbiology, 2024, 120: 104466.
Zhang Y, Cui W, Zhou H, et al. Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine[J]. Foods, 2025, 14(2): 192.
Zhou Z, Ren F, Huang Q, et al. Characterization and interactions of spoilage of Pseudomonas fragi C6 and Brochothrix thermosphacta S5 in chilled pork based on LC-MS/MS and screening of potential spoilage biomarkers[J]. Food Chemistry, 2024, 444: 138562.
Zhu H, Li P, Wang L, et al. Flavor profile of “Dao Ban Xiang”(a traditional dry‐cured meat product in Chinese Huizhou cuisine) at different processing stages in winter and summer[J]. Food Science & Nutrition, 2023, 11(6): 2733-2750.
陈娟,张德权,文向圆,等.纳米二氧化钛抗菌热收缩膜的制备与性能研究[J].包装工程,2023,44(07):1-9.
郭依萍,栗婧文,窦晗,等.精准温控对冰温贮藏生鲜猪肉保鲜效果的影响[J].南京农业大学学报,2023,46(01):150-158.
李成林,甘俊兰,陈宇,等.紫外预杀菌处理对生鲜猪肉贮藏品质的影响[J].食品安全质量检测学报,2025,16(01):266-274.
李潘,李平,王兆明,等.畜禽血液功能特性及加工适应性研究进展[J].食品研究与开发,2023,44(09):191-196.
李亚凯,周存六,李锐,等.珠蛋白水解物对肌球蛋白大豆油乳液理化性质的影响[J].合肥工业大学学报(自然科学版),2024,47(02):275-282.
刘思露,陈珊珊,邵良婷,等.肉源性葡萄球菌的安全与发酵特性[J].食品科学,2023,44(18):102-109.
刘晓妮,崔伟,张超,等.血红素肽铁的絮凝分离工艺优化及其抗氧化活性[J].食品研究与开发,2025,46(03):107-115.
王康宇,王雯芳,侯成立,等.芬顿反应制备低分子量硫酸软骨素及其降解机制[J].农业工程学报,2023,39(21):269-278.
王素,张德权,王卫,等.超快速冷却结合不同包装贮藏对冷鲜猪肉品质的影响[J].中国食品学报,2023,23(10):238-248.
王雯芳,王康宇,郭玉杰,等.硫酸软骨素低共熔溶剂法高效提取及其结构表征[J].农业工程学报,2023,39(23):276-284.
张宇康,段留奎,袁程勋,等.基于Faster RCNN模型的鸡胴体表皮破损缺陷高光谱图像检测方法研究[J].建模与仿真, 2024, 13(3):3033-3041.
邹昊,臧明伍,乔晓玲,等.屠宰过程中滩羊胴(屠)体表面微生物污染水平的变化[J].食品研究与开发,2023,44(02):151-155.
专利
GENE RECOMBINANT VECTOR, GENETICALLY ENGINEERED STRAIN AND PREPARATION METHOD OF COLLAGENASE.
白条表皮紫外线杀菌装置(CN202410862084.3).
冰箱(CN202211214104.3).
冰箱(CN202211215976.1).
底部设置蒸发皿的冰箱(CN202411268212.8).
高抗氧化活性骨胶原蛋白肽的制备方法(CN202210340061.7).
具有Janus结构的壳聚糖/玉米醇溶蛋白缓释抗菌膜、制备方法及应用(CN202410338810.1).
冷藏冷冻装置(CN202411417226.1).
酶法-低共熔溶剂偶联提取硫酸软骨素的方法(CN202410746639.8).
生鲜肉品的品质监控方法、装置和电子设备(CN202410648832.8).
一种超冰温贮藏猪肉的方法(CN202311573888.3).
一种超冰温贮藏猪肉的方法(CN202311573888.3).
一种畜禽血液分离装置及方法 (ZL202310354309X).
一种低脂香肠及其制备方法(CN202410164812.3).
一种基于复合酶和糖化协同处理的用于猪蹄去腥增香的方法(ZL202311518282X).
一种基于美拉德反应去除牛蹄腥味的方法(ZL2024103276500).
一种基于设备联机的肉块高效腌制装置(CN202220868333.6).
一种基于深度学习的鸡胴体缺陷高光谱图像检测方法(ZL202310502718.X).
一种基于双目视觉系统的分割猪肉断面脂肪最大厚度检测方法(ZL202310039130.5).
一种能拓宽冰温带的肉类保鲜设备及方法(CN202211036719.1).
一种肉类工业用冰温真空速冷设备及方法(CN202211269705.4).
一种肉类贮藏时间的检测方法及装置(CN202211616002.4).
一种深度学习与图像处理相结合的猪胴体背膘厚度测量位置自动定位方法(ZL202310421277.0).
一种提高调理肉风味和保水性的方法(CN202410111247.4).
一种提高调理肉制品保水性的新型级联加工方法(CN202211480834.8).
一种消减肥肠及其制品脏器异味的方法(ZL2023106454223).
一种血红素和珠蛋白的联产制备方法(ZL2023100398997).
一种腌制肉块连续切片包装装置(CN202220870661.X).
一种抑制生鲜肉腐败菌的热收缩包装膜及其制备方法(CN202210364407.7).
一种益生菌及其在血红素肽铁制备中的应用(ZL202310569120.2).
一种用于对猪胴体进行自动切割的装置(CN202220121416.9).
一种猪半胴体五花肉轮廓切割路径自主规划系统(CN202210043178.9).
一种猪半胴体智能分割方法(CN202210043173.6).
一种猪半胴体智能分割方法(ZL202210043173.6).
一种猪半胴体智能化自动分割方法(CN202210447022.7).
一种猪半胴体智能化自动分割方法(ZL202210447022.7).
一种自动进出料的超声滚揉腌制设备(CN202211268309.X).
一种自动进出料的超声滚揉腌制设备(CN202222731685.X).
用于冰箱的蒸发皿及冰箱(CN202211218009.0).
蒸发器设置于储物间室下方的冰箱(CN202411266278.3).